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Abstract The calculation of correlation functions for β = 1 random matrix ensembles,
which can be carried out using Pfaffians, has the peculiar feature of requiring a separate
calculation depending on the parity of the matrix size N . This same complication is present
in the calculation of the correlations for the Ginibre Orthogonal Ensemble of real Gaussian
matrices. In fact the methods used to compute the β = 1, N odd, correlations break down
in the case of N odd real Ginibre matrices, necessitating a new approach to both problems.
The new approach taken in this work is to deduce the β = 1, N odd correlations as limiting
cases of their N even counterparts, when one of the particles is removed towards infinity.
This method is shown to yield the correlations for N odd real Gaussian matrices.

Keywords Random matrices · Pfaffian processes · Ginibre ensemble · Correlation
functions

1 Introduction

1.1 Background

The identification of the statistics of a complicated physical system with the statistics of
random matrices was first made explicit by Eugene Wigner [30, 31]. Motivated particularly
by the difficulty of applying an individual particle model to the calculation of nuclear energy
levels [16], he studied the eigenvalues and eigenvectors of an ensemble of real symmetric
matrices whose entries were normally distributed.
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Due to concerns with defining a unique Gaussian ensemble and the difficulty of carrying
out the mathematics, Dyson [7] studied Circular Ensembles, where the matrix elements are
points on the unit circle. In Dyson’s formulation, he hypothesised identifying the behaviour
of a sequence of n eigenvalues (from a total of N � n eigenvalues, all lying on the unit
circle) with the behaviour of n energy levels in a physical system. As part of the analysis,
he developed the seminal distinction between Orthogonal, Unitary and Symplectic ensem-
bles by examining time-reversal and rotational symmetries [6]—the required symmetries
imply that the respective ensemble be invariant under orthogonal (COE), unitary (CUE) and
symplectic (CSE) transformations.

The analogous ensembles in the Gaussian case are the GOE, GUE and GSE. The required
symmetries mean that GOE consists of real symmetric matrices, GUE of Hermitian complex
matrices, and GSE of self-dual real quaternion matrices. As a consequence of these facts the
eigenvalues of all the Gaussian ensembles are constrained to lie on the real line; the joint
probability density functions (jpdfs) are [23]

PN,β(x1, . . . , xN) = 1

CN,β

e−β
∑N

k=1 x2
k
/2

∏

i<j

|xi − xj |β (1)

with β = 1,2,4 corresponding respectively to the GOE, GUE and GSE; CN,β is some nor-
malisation constant.

Compare this with the jpdf for the circular ensembles:

QN,β(θ1, . . . , θN) = 1

CN,β

∏

i<j

|eiθi − eiθj |β (2)

where β = 1,2,4 correspond respectively to COE, CSE and CSE. CN,β is again used to
denote the normalisation. The eigenvalues of these ensembles lie on the unit circle in the
complex plane. Note that (1) and (2) share the common feature that the interaction between
the eigenvalues is precisely the distance between them raised to the power of β .

The clear distinction between the elements of the matrices of each Gaussian ensemble
led Ginibre [14] to a generalisation specified by removing the symmetric/Hermitian/self-
dual requirement. Despite the irrelevance of the orthogonal, unitary and symplectic terms
in relation to their formation, these ensembles are named for their eponymous Gaussian
cousins: GinOE of real matrices; GinUE of complex matrices; and GinSE of real quaternion
matrices.

Ginibre’s ensembles provided the motivation for the current work. GinUE is relatively
straightforward; Ginibre himself worked out the jpdf and eigenvalue correlations in his orig-
inal paper of 1965. GinSE was slightly more opaque; Ginibre was able to identify the jpdf
but was not able to find the correlations. Further work has since developed these correla-
tions [15]. On the other hand, GinOE proved quite intractable until very recently. Ginibre
was only able to find the jpdf in the case where all eigenvalues are real. The full jpdf was
not developed until 1991 [17], and the complete correlations took longer still [28].

The trouble largely stems from there being different sectors to the jpdf, determined by
the number of real eigenvalues [8, 17, 24]. Yet there is a further problem.

For an N × N matrix, the N even and N odd cases require a different analysis. In the
N even case the eigenvalue correlations have been the subject of the recent works [3, 11,
27, 28]. Of these, only [28] gives an analysis of the correlations for N odd. The feature that
N odd and N even must be treated separately is already present in the calculation of the
correlations for (1) and (2) in the case β = 1. It is the aim of this paper to show that the



A Method to Calculate Correlation Functions for β = 1 445

calculation of these latter correlations, and those of GinOE, can be accomplished as a limit
of the N even cases.

1.2 Parity Problems for β = 1

For β = 1 in (1) or (2) the general n-point correlation is given by an n × n quaternion
determinant, or equivalently a 2n × 2n Pfaffian (these are revised in Sect. 2). This fact was
revealed by Dyson [7] in the case of (2) and further developed in a series of papers by Mehta
[18, 20, 21]. The strategy of Dyson was to express the jpdf itself as an N × N quaternion
determinant, and then to successively integrate this to deduce the n-point correlation. Suc-
cessive integrations require a certain skew-orthogonality property that effectively reduces
the size of the quaternion upon each integration. It is the first step which requires that N

even and N odd be treated separately. In the method of Dyson the identity between the jpdf
and the quaternion determinant involves a matrix factorisation; in the N odd case this was
achieved by the introduction of an auxiliary parameter δ, and the limit δ → 0 is taken.

These complications make N odd technically more difficult. In fact, the study of the
correlations for a generalisation of (1) with β = 1

1

CN

N∏

l=1

e−V (xl )
∏

1≤j<k≤N

|xk − xj | (3)

for general V (x), given in [18], was restricted to N even. The modification required for N

odd is implied in the later paper of Frahm and Pichard [13], and the resulting formulae were
written out explicitly in [1].

The method of integration over alternate variables [19], or use of integration formulae
due to de Bruijn for the product of a Pfaffian times a determinant [5] (each of which implies
distinct treatment of even and odd), can be used to express the generating function for the
correlations as an N ×N Pfaffian. In the N even case de Bruijn’s method was used by Tracy
and Widom [29] to obtain a formula for the generating function as the square root of the
Fredholm determinant of a 2 × 2 matrix integral operator, and functional differentiation is
used to extract the correlations. Using essentially this same method Borodin and Sinclair
computed the correlations for GinOE in the case of N even.

For the case of N odd, a quite different method, using Grassmannians and without the
use of skew-orthogonal polynomials, was developed in [28]. By introducing an artificial
Grassmannian in the odd case, and using a diagrammatic method of expansion, the nth
order GinOE correlations are generated for general N .

1.3 Guide to Paper

Section 2 introduces the terminology and concepts required for the study of β = 1 cases,
and outlines the problems encountered when dealing with an odd number of eigenvalues.
The difficulties that have postponed the identification of the jpdf and the calculation of
the correlation functions for the GinOE are described, along with some of the attempts to
overcome them.

Section 3 details the process of developing N odd correlations for the jpdf (3) as limiting
cases of the extant N even correlations [1]. See also [10].

In Sect. 4, the method as presented in Sect. 3 is applied to the GinOE using the existing
N even solution. The final section discusses the conditions under which this method would
be applicable and suggests a future application.
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2 The Trouble with Being Odd

Dyson [7] identified that the correlation functions for β = 1,4 are naturally expressed as
quaternion determinants of matrices with quaternion elements. The problem can also be
looked at from a Pfaffian viewpoint, since they are equivalent. This is the essence of the
parity problems; Pfaffians of odd dimension are trivially zero, and their machinery does not
seem immediately adapted to dealing with this.

We first look at the relevant definitions.

2.1 Quaternion Determinants and Pfaffians

For a quaternion expressed as a 2 × 2 matrix

Mi,j =
[

a b

c d

]

(4)

the dual of Mi,j is written as

M̄i,j =
[

d −b

−c a

]

(5)

A matrix M consisting of N × N blocks of quaternions is said to be self-dual if

Mj,i = M̄i,j (6)

For ease of reference we provide here the definitions of quaternion determinants and
Pfaffians.

Definition 1 (Quaternion determinants) Let M be an N × N self dual matrix of quater-
nions Mi,j . The quaternion determinant is defined by

QDet[M] =
∑

P∈SN

(−1)N−l

l∏

1

(MabMbc · · ·Msa)
(0) (7)

The superscript (0) denotes the operation 1
2 Tr of the quantity in brackets. P is any permu-

tation of (1, . . . ,N) which consist of l disjoint cycles of the form (a → b → c → ·· · →
s → a). If the Mi,j are scalars then QDet[M] = Det[M].

Definition 2 (Pfaffians) Let X = [τij ]i,j=1,...,2N where τji = −τij so that X is an antisym-
metric matrix of even degree. Then the Pfaffian of X is defined by

Pf[X] =
∗∑

P(2l)>P (2l−1)

ε(P )τP(1),P (2)τP (3),P (4) · · · τP(2N−1),P (2N)

= 1

2NN !
∑

P∈S2N

ε(P )τP(1),P (2)τP (3),P (4) · · · τP(2N−1),P (2N) (8)

where ε(P ) is the sign of the permutation. The * above the first sum indicates that the sum
is over distinct terms only (that is, all permutations of the pairs of indices are regarded as
identical).
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Usefully, Pfaffians can be calculated using a form of Laplace expansion. For a determi-
nant, recall that you may expand along any row or column. For example, expand a matrix
A = [aij ]i,j=1,...,n along the first row:

Det[A] = a1,1Det[A]1,1 − a1,2Det[A]1,2 + · · · + (−1)n+1a1,nDet[A]1,n (9)

where Det[A]i,j means the determinant of the matrix left over after deleting the ith row and
j th column.

The analogous expansion for a Pfaffian involves deleting two rows and two columns each
time. For example, expanding a skew-symmetric matrix B = [bij ]i,j=1,...,n (n even) along
the first row:

Pf[B] = b1,1Pf[B1,1] − b1,2Pf[B1,2] + · · · + (−1)nb1,nPf[B1,n] (10)

where Pf[Bi,j ] means the Pfaffian of the matrix left after deleting the ith and j th rows and
the ith and j th columns. Laplace expansion requires n! calculations for a determinant, and
n!! = n · (n − 2) · (n − 4) · · · in the case of a Pfaffian.

2.2 A Pfaffian by Any Other Name

Define the matrix

Z2N = 1N ⊗
[

0 −1
1 0

]

(11)

(that is, Z2N is a 2N × 2N matrix consisting of N 2 × 2 anti-symmetric blocks along the
diagonal). By operating with Z2N we can change an N ×N self-dual quaternion matrix into
a 2N × 2N anti-symmetric matrix. The effect of Z2N is to interchange each pair of columns
and multiply every second column by (−1).

Using Z2N we find the following simple relationship between Pfaffians and quaternion
determinants

QDet[M] = Pf[MZ−1
2N ] (12)

For a proof of (12) see [10].
In light of (12) it is understood that we may use the terms quaternion determinant and

Pfaffian interchangeably.

2.3 2N or Not 2N

Why is N odd for β = 1 special? This can best be understood by considering the generating
function

ẐN,β [a] :=
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN

N∏

l=1

a(xl)e
−βV (xl )

∏

1≤j<k≤N

|xk − xj |β (13)

In the case β = 4 the generating function can be expressed in the Pfaffian form [18]

ẐN,4[a] = N !2N Pf[αj,k]j,k=1,...,2N (14)

where

αj,k = 1

2

∫ ∞

−∞
e−2V (x)a(x)

(
Qj−1(x)Q̃k−1(x) − Qk−1(x)Q̃j−1(x)

)
dx (15)
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with Qn(x) an arbitrary monic polynomial of degree n and

Q̃n−1(x) := d

dx

(
e−2V (x)Qn−1(x)

)
(16)

In the case β = 1 and N even, the method of integration over alternate variables
gives [18]

ẐN,1[a] = N !2N/2 Pf[γj,k]j,k=1,...,N (17)

where

γj,k := 1

2

∫ ∞

−∞
dx e−V (x)a(x)Rj−1(x)

×
∫ ∞

−∞
dy e−V (y)a(y)Rk−1(y)sgn(y − x) (18)

with Rn(x) an arbitrary monic polynomial of degree n. The structure of (14) is subtly, but
crucially, different to (17) as the matrix in the latter is of even size only when N is even,
while that of the former is always of even size, regardless of the parity of N .

According to Definition 2 a Pfaffian is defined only for an even sized matrix. Extension of
this definition to the odd-sized case has been given by de Bruijn [5]—his treatment amounts
to bordering by an additional column of 1s and an additional row of −1s with a zero in the
bottom right corner. In fact the method of integration over alternate variables also gives that
the N odd Pfaffian formula [22] is obtained from the one for N even (17) by bordering

ẐN,1[a] = N !2(N+1)/2 Pf

[ [γi,j ]i,j=1,...,N [νi]i=1,...,N

[νj ]j=1,...,N
0

]

(19)

where γi,j is as in (18), while

νi := 1

2

∫ ∞

−∞
e−V (x)a(x)Ri−1(x)dx (20)

The significance of the generating function is that the correlation functions follow by
functional differentiation

ρ(n)(u1, . . . , un) = 1

ZN [a]
δn

δa(u1) · · · δa(un)
ZN [a]

∣
∣
∣
a=1

(21)

Using (17) and (21), Tracy and Widom [29] showed how the known n × n quaternion
determinant formula from [18] for ρ(n) in the case β = 1, N even could be reclaimed. Crucial
to their method is the identity

Det(1p + Ap×qBq×p) = Det(1q + Bq×pAp×q) (22)

where Ap×q is a p × q (and Bq×p is a q × p) matrix valued integral operator. However,
β = 1 for N odd has not yielded to this approach. Yet, the correlations in this case are
known—how then were they derived?
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2.4 Guessing the Answer—Then Verifying It

For general jpdfs PN,β , symmetric in all variables, the n-point correlation ρ(n) can be ex-
pressed as an integral according to

ρ(n)(r1, . . . , rn) = N(N − 1) · · · (N − n + 1)

×
∫

drn+1 · · ·
∫

drN PN,β(r1, . . . , rN ) (23)

Note in particular that

ρ(n)(r1, . . . , rn) = 1

N − n

∫

drn+1 ρ(n+1)(r1, . . . , rn+1) (24)

This recurrence together with the initial condition

ρ(N)(r1, . . . , rN ) = N !PN,β(r1, . . . , rN) (25)

completely determines {ρ(n)}n=1,2,...,N .
Now the functional differentiation method, when used in conjunction with a Pfaffian

form of the generating function, is well suited for the computation of the 1- and 2-point
correlations. Such a calculation does not rely on (22), and so can be applied to both the
N even and N odd cases for β = 1. It reveals that ρ(n) can, for n = 1,2 be expressed as a
2n × 2n Pfaffian with entries independent of n.

From this, one can then conjecture a Pfaffian form for ρ(n) in general. The validity of the
conjecture requires verifying both (24) and (25). It is the verification of (25) that requires N

odd be treated differently [7, 13]. The verification of (24) is done by using a recursion for
integrals of quaternion determinants, known as the Dyson Integration Theorem [2, 7, 21],
and the parity of N plays no explicit role.

Theorem 1 (Dyson Integration Theorem) Let f (x, y) be a function of real, complex or
quaternion variables where

f̄ (x, y) = f (y, x) (26)

with f̄ being the function f , the complex conjugate of f or the dual of f depending on
whether x and y are real, complex or quaternion respectively.

Also suppose

∫

f (x, x)dμ(x) = c (27)

∫

f (x, y)f (y, z)dμ(y) = f (x, z) + λf (x, z) − f (x, z)λ (28)

for some suitable measure dμ, a constant scalar c and a constant quaternion λ.
Then for a matrix Fn×n = [f (xi, xj )]n×n we have

∫

QDet[Fn×n]dμ(xn) = (c − n + 1)QDet[F(n−1)×(n−1)] (29)
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Remember that if f (xi, xj ) is a scalar, then QDet reduces to a standard determinant. For
a proof of Theorem 1 see Theorem 5.1.4 in [22].

The Pfaffian formula (17) involves an arbitrary set of monic polynomials {Rj(x)}j=0,1,....
For the implementation of Dyson’s integration formula, in particular the validity of (27) and
(28), these polynomials must be chosen to have a certain skew-orthogonality property.

Define a skew-symmetric inner product 〈·|·〉 by

〈f |g〉 := 1

2

∫ ∞

−∞
dx e−V (x)f (x)

∫ ∞

−∞
dy e−V (y)g(y)sgn(y − x) (30)

and let {Rn(x)}n=0,1,... be a corresponding family of monic skew orthogonal polynomials so
that

〈R2m|R2n+1〉 = −〈R2n+1|R2m〉 = rnδnm, rn > 0 (31)

〈R2m|R2n〉 = 〈R2m+1|R2n+1〉 = 0 (32)

With this specification of {Rj(x)}j=0,1,... the correlations for the jpdf (3) have been
shown, by verifying (24) and (25), to be given by explicit n × n quaternion determinant
formulae. First the case when N is even.

Theorem 2 Let {Rn(x)}n=0,1,... be as above, then for an eigenvalue distribution given by (3),
the nth order correlation function, in the case of N even, is given by

ρ(n)(x1, . . . , xn) = QDet[f (xi, xj )]i,j=1,...,n (33)

where

f (x, y) =
[

S(x, y) Ĩ (x, y)

D(y, x) S(y, x)

]

(34)

and

S(x, y) =
N/2−1∑

k=0

e−V (y)

rk

(
Φ2k(x)R2k+1(y) − Φ2k+1(x)R2k(y)

)
(35)

D(x,y) =
N/2−1∑

k=0

e−V (x)−V (y)

rk

(
R2k(x)R2k+1(y) − R2k+1(x)R2k(y)

)
(36)

Ĩ (x, y) =
N/2−1∑

k=0

1

rk

(
Φ2k+1(x)Φ2k(y) − Φ2k(x)Φ2k+1(y)

)
+ h(x, y) (37)

Φk(x) =
∫ ∞

−∞
h(y, x)Rk(y)e−V (y)dy (38)

h(x, y) = 1

2
sgn(y − x) (39)

For N odd, the correlations exhibit the same functional form but with some modifications
to the kernel (34) as follows.
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Theorem 3

Sodd(x, y) =
(N−1)/2−1∑

k=0

e−V (y)

r̂k

(
Φ̂2k(x)R̂2k+1(y) − Φ̂2k+1(x)R̂2k(y)

)

+ e−V (y)

2 r̂(N−1)/2)

RN−1(y) (40)

Dodd(x, y) =
(N−1)/2−1∑

k=0

e−V (x)−V (y)

r̂k

(
R̂2k(x)R̂2k+1(y) − R̂2k+1(x)R̂2k(y)

)
(41)

Ĩ odd(x, y) =
(N−1)/2−1∑

k=0

1

r̂k

(
Φ̂2k+1(x)Φ̂2k(y) − Φ̂2k(x)Φ̂2k+1(y)

)
+ h(x, y) (42)

+ 1

2 r̂(N−1)/2

(
Φ̂N−1(x) − Φ̂N−1(y)

)
(43)

with

r̂n := rn (n = 0, . . . , (N − 3)/2) (44)

r̂(N−1)/2 := 1

2

∫ ∞

−∞
e−V (y)RN−1(y)dy (45)

R̂n(x) := Rn(x) − RN−1(x)

2r(N−1)/2

∫ ∞

−∞
e−V (y)Rn(y)dy (46)

R̂N−1(x) := RN−1(x) (47)

Φ̂n(x) :=
∫ ∞

−∞
e−V (y)h(y, x)R̂n(y)dy (48)

Proofs of these theorems, using this notation, are found in [10]. The original proofs are
contained in [1, 13, 18].

A problem presents itself if the jpdf is not a symmetric function in all variables. Then
the recursion (24) does not hold and so the strategy leading to Theorems 2 and 3 is not
valid. As mentioned, there is an alternative strategy involving the functional differentiation
formula (21). It however had not been successfully implemented in the case of β = 1, N odd.
(Since submission of this paper the functional differentiation strategy has been successfully
carried through; see the recent preprint by Sinclair [26].)

As to be revised in the next section, the GinOE, N odd case falls prey to both of these
negative results, and so requires investigation of terra incognita.

2.5 Ginibre Orthogonal Ensemble

In the development of the theory of the Gaussian and circular ensembles, the eigenvalue
jpdfs (1) and (2) were contained in the pioneering papers of Dyson and Mehta [6, 23]. In
contrast, it took over 25 years from the formulation of GinOE [14] to the determination of
its eigenvalue jpdf. That this problem is more complex than those solved previously can be
seen from the fact that for any N there is a non-zero probability of having at least one real
eigenvalue—the real line is populated despite having measure zero inside the support of the
set of all eigenvalues.
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The jpdf therefore breaks up into sectors labelled by the number k of real eigenvalues
(this number must have the same parity as the size of the matrix N because the complex
eigenvalues come in complex conjugate pairs) and was first computed in [17] and then later
in [8] and [24]. The explicit form reads

PN,k(�,W) = 1

CN,k

k∏

i=1

e−λ2
i
/2

(N−k)/2∏

j=1

e
−(w2

j
+w̄2

j
)/2erfc(|Im(wj )|

√
2)

× Δ(� ∪ W) (49)

where � = {λ}1,...,k are the real eigenvalues and W = {wi, w̄i}i=1,...,(N−k)/2 are the complex
eigenvalues, which come in conjugate pairs. Δ is the product of absolute differences, i.e.
Δ({xi}) := ∏

i<j |xi − xj |.
In any one sector k the correlation functions for m (where m ≤ k) real eigenvalues and

(n−m)/2 complex eigenvalues in the upper half plane are specified by an integral analogous
to (23), and thus recursions (one an integral over a real eigenvalue and the other an integral
over a complex eigenvalue) analogous to (24) hold. However, confining the correlations to
a particular sector is not in keeping with the realities of the problem, in which the number
of real eigenvalues is not known a priori. Consequently, the correct way to specify the
correlations is to first introduce the summed-up generating function

ZN [u,v] =
N∑

k=0

∗Zk,(N−k)/2[u,v] (50)

where ∗ indicates that the sum is restricted to values of k with the same parity as N and

Zk,(N−k)/2[u,v] =
∫ ∞

−∞
dλ1 · · ·

∫ ∞

−∞
dλk

k∏

l=1

u(λl)

×
∫

R
2+

dw1 · · ·
∫

R
2+

dw(N−k)/2

(N−k)/2∏

l=1

v(wl )

× PN,k(�,W) (51)

with wl = (xl, yl), wl := xl + iyl .
From (50) we compute the correlation function for m real eigenvalues, and (n − m)/2

complex eigenvalues in the upper half plane according to the functional differentiation for-
mula

ρ(n)(x,w) = 1

ZN [u,v]
δn

δu(x1) · · · δu(xm)δv(w1) · · · δv(wn−m
2

)
ZN [u,v]

∣
∣
∣
u=v=1

(52)

Expanding out the functional differentiation does not lead to an integral formula for ρ(n)

analogous to (23), because the RHS of such a formula would now consist of the sum of
many different integrals. Thus, for the calculation of the correlations, the strategy of using
(24) and (25) or their analogues, is not available for GinOE.

This leaves then just the one strategy, namely to give a Pfaffian form of the summed-up
generating function (50), and to deduce from this (using (22) or similar) a Pfaffian form
for ρ(n). It was some time after the discovery of (49) before this program could be carried
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through. The first advance was the deduction of a Pfaffian formula for ZN [u,v] [25]

ZN [u,v] = 2−N(N+1)/4

∏N

l=1 Γ (l/2)
Pf[αj,k[u] + βj,k[v]]i,j=1,...,N (53)

where

αj,k[u] =
∫ ∞

−∞
dx u(x)

∫ ∞

−∞
dy u(y)e−(x2+y2)/2

× pj−1(x)pk−1(y)sgn(y − x) (54)

βj,k[v] = 2i

∫

R
2+

dwv(w)e−(w2+w̄2)/2erfc(
√

2|Im(w)|)

×
(
pj−1(w)pk−1(w̄) − pk−1(w)pj−1(w̄)

)
(55)

for arbitrary monic polynomials pl(x) of degree l.
To proceed further, the polynomials pl(x) must be chosen to be skew-orthogonal with

respect to the skew inner product

(pj−1,pk−1) := (αj + βk)

∣
∣
∣
u=v=1

=: Gj,k (56)

satisfying

G2j,2k = G2j−1,2k−1 = 0, G2j−1,2k = −G2k,2j−1 = rj−1δj,k (57)

The requisite polynomials are identified in [11]

p2j (x) = x2j , p2j+1 = x2j+1 − 2jx2j−1

rj−1 = 2
√

2πΓ (2j − 1)
(58)

With knowledge of these skew-orthogonal polynomials, it is a relatively routine task
to then compute correlations using (52). In the case of N even, through the use of (22),
this leads to the computation of ρ(n), n arbitrary, for the real-real and complex-complex
correlations in [11], and then for mixed real and complex correlations in [3].

For N odd it is not known how to make use of (22) (recall the remark below that for-
mula). Nonetheless, provided n = 1,2 the functional differentiations required by (52) are
tractable via a direct calculation. Indeed, the authors have carried through the required com-
putations. These low order calculations, together with the structure of the general n-point
correlations for N even as known from [3] immediately suggest the n-point correlations
in the case of N odd. However, what is not immediate, given the inapplicability of the re-
currence (24) (or an analogue) and the lack of knowledge on how to implement functional
differentiation systematically for N odd, is a way to verify these formulae.

This suggests revisiting the problem of computing the correlations for (3) in the case of
N odd. Can we devise a strategy that reclaims Theorem 3 and will furthermore be applicable
to the N odd case of GinOE?

In fact this broader question is now of more importance than the calculation of the corre-
lations for the N odd case of GinOE. Very recently Sommers and Wieczorek [28] studied the
correlation for GinOE through functional differentiations combined with the use of Grass-
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mannian integrals. By the use of a certain additional ‘artificial Grassmannian’, they have
solved the N odd case. Our idea is quite different; we will show that the N odd correlations
can be obtained from the N even case by a limiting procedure. Moreover, our approach is
generally applicable, when given a certain determinant or Pfaffian form for the correlations
pertaining to the N even case.

3 The Taming of the Odd

To go from N even to N odd in (3) we propose taking one of the eigenvalues off to infinity.
This will be a useful strategy if the jpdf exhibits the factorisation

PN,1(x1, . . . , xN) ∼
|x1|→∞

fN(x1)PN−1,1(x2, . . . , xN) (59)

Indeed (3) satisfies (59) with

fN(x) = CN−1

CN

xN−1e−V (x) (60)

It then follows from (23) that

ρN
(m)(r1, . . . , rm) ∼|rm|→∞NfN(rm)ρN−1

(m−1)(r1, . . . , rm−1) (61)

where the superscripts on the ρ(k) indicate the total number of eigenvalues.
With this total number of eigenvalues fixed on the LHS, the total is reduced by one, and

thus odd, on the RHS. We can further use (59), (60) and (23) to show

ρN
(1)(r) ∼|r|→∞NfN(r) (62)

and thus rewrite (61) to read

ρN
(m)(r1, . . . , rm) ∼

|rm|→∞
ρN

(1)(rm)ρN−1
(m−1)(r1, . . . , rm−1) (63)

Either way, we have that the (m− 1)-point correlation for N odd is a limit of the m-point
correlation for N even. Our task now is to show how (61) can be used to deduce Theorem 3
from Theorem 2; and for that we begin with humble row and column reduction.

3.1 Humble Row and Column Reduction

As discussed above, the mth correlations of the β = 1 ensembles consist of quaternion de-
terminants of m × m matrices with quaternion elements.

Using Theorem 2 we isolate the mth eigenvalue and write out the quaternion determinant
explicitly, in Pfaffian form (according to (12)).

ρ(m)(x1, . . . , xm)

= Pf

⎡

⎢
⎢
⎢
⎣

[−Ĩ (xi, xj ) S(xi, xj )

−S(xj , xi) D(xi, xj )

] [−Ĩ (xi, xm) S(xi, xm)

−S(xm, xi) D(xi, xm)

]

[
Ĩ (xm, xj ) S(xm, xj )

−S(xj , xm) D(xm, xj )

] [
0 S(xm, xm)

−S(xm, xm) 0

]

⎤

⎥
⎥
⎥
⎦

i,j=1,...,m−1

(64)
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for some fixed m. This matrix consists of 4 submatrices of sizes:

– Top left: 2(m − 1) × 2(m − 1).
– Top right: 2(m − 1) × 2.
– Bottom left: 2 × 2(m − 1).
– Bottom right: 2 × 2.

Using skew-symmetry preserving row and column operations, (64) becomes:

S(xm, xm)Pf

⎡

⎢
⎢
⎢
⎣

[−Ĩ ∗(xi, xj ) S∗(xi, xj )

−S∗(xj , xi) D∗(xi, xj )

] [−Ĩ (xi , xm) 0
−S(xm, xi) 0

]

[−Ĩ (xm, xj ) S(xm, xj )

0 0

] [
0 1

−1 0

]

⎤

⎥
⎥
⎥
⎦

i,j=1,...,m−1

= S(xm, xm)Pf

[
−Ĩ ∗(xi, xj ) S∗(xi, xj )

−S∗(xj , xi) D∗(xi, xj )

]

i,j=1,...,m−1

(65)

where

D∗(xi, xj ) = D(xi, xj ) − D(xi, xm)S(xm, xj )

S(xm, xm)
− S(xm, xi)D(xm, xj )

S(xm, xm)
(66)

S∗(xi, xj ) = S(xi, xj ) − S(xi, xm)S(xm, xj )

S(xm, xm)
− D(xm,xj )Ĩ (xi, xm)

S(xm, xm)
(67)

Ĩ ∗(xi, xm) = Ĩ (xi, xj ) − S(xi, xm)Ĩ (xm, xj )

S(xm, xm)
− S(xj , xm)Ĩ (xi, xm)

S(xm, xm)
(68)

The equality in (65) can be seen by using the Laplace expansion method for Pfaffians
discussed in Sect. 2.1. Note that (65) factors out ρN

(1) as required by (63).

3.2 To Infinity and Beyond

To compute ρN−1
(m−1) according to (63), we must cancel S(xm, xm) and take xm → ∞ in the

entries of the remaining Pfaffian.
To reclaim Theorem 3 we must then have:

D∗(xi, xj )

∣
∣
∣
xm→∞

= Dodd(xi, xj )

∣
∣
∣
N→N−1

(69)

S∗(xi, xj )

∣
∣
∣
xm→∞

= Sodd(xi, xj )

∣
∣
∣
N→N−1

(70)

Ĩ ∗(xi, xj )

∣
∣
∣
xm→∞

= Ĩ odd(xi, xj )

∣
∣
∣
N→N−1

(71)

Now using (35), (36) and (37) we see that as xm → ∞

D(xi, xm) ∼ e−V (xi )e−V (xm)

rN/2−1
RN−2(xi)RN−1(xm) (72)

S(xi, xm) ∼ e−V (xm)

rN/2−1
ΦN−2(xi)RN−1(xm) (73)
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S(xm, xi) ∼
N/2−1∑

k=0

e−V (xi )

rk

[

R2k+1(xi)
1

2

∫ ∞

−∞
e−V (y)R2k(y)dy

− R2k(xi)
1

2

∫ ∞

−∞
e−V (y)R2k+1(y)dy

]

(74)

S(xm, xm) ∼ e−V (xm)

rN/2−1
RN−1(xm)

1

2

∫ ∞

−∞
e−V (y)RN−2(y)dy (75)

Ĩ (xi, xm) ∼
N/2−1∑

k=0

1

rk

[

Φ2k+1(xi)
1

2

∫ ∞

−∞
e−V (y)R2k(y)dy

− Φ2k(xi)
1

2

∫ ∞

−∞
e−V (y)R2k+1(y)dy

]

+ 1

2
(76)

From these we find the equalities (69), (70) and (71), and so Theorem 3 is reclaimed.

4 GinOE into the Fold

Here we show that GinOE is amenable to the same treatment; we claim that an analogy of
the asymptotic factorisation formula (63) again holds true. To understand this we return to
the jpdf (49) and impose the ordering constraint

λ1 < λ2 < · · · < λk (77)

One significance of this is that the normalisation CN,k , which, prior to this ordering, is
dependent on k through the factor k!, is then CN,k = CN,N−k , a function of N and N −k only
[8, 17]. The formula (51) must correspondingly be modified in its domains of integration to
account for these orderings. With this understood, we observe that for large x

δ

δu(x)
Zk,(N−k)/2[u,v] ∼

x→∞
CN−1,N−k

CN,N−k

e−x2/2xN−1 Zk−1,(N−k)/2[u,v] (78)

The reason for this is that in this limit the leading contribution comes from the func-
tional derivative acting on the λk variable as ordered in (77). But according to (49), and
the remark made above relating to CN,k , the jpdf contributing to each term in (50) keeps
its functional form, but with N �→ N − 1 and k �→ k − 1 and an overall factor of
CN−1,N−k

CN,N−k
e−x2/2xN−1.

This latter factor is the leading x → ∞ form of ρ(1)(x), as can be seen from (52) with
n = m = 1 and (78) itself. Use of (78) in (52) for general n gives as the analogue of (63) for
GinOE

ρN
(n1,n2)(x,w) ∼

x1→∞ρN
(1,0)(x1)ρ

N−1
(n1−1,n2)(x,w) (79)

where ρN
(n1,n2) is the correlation function for n1 real and n2 complex eigenvalues from the

ensemble of N × N matrices.



A Method to Calculate Correlation Functions for β = 1 457

To proceed, we first need the appropriate even solution; for this we use that of [4].

Theorem 4 Let {pi}i=1,... be the skew-orthogonal polynomials of (58) then

ρN
(n1,n2)(x,w) = Pf

[
KN(xi, xj ) KN(xi,wl)

KN(wk, xj ) KN(wk,wl)

]

, xi ∈ R, wi ∈ R
+
2 (80)

KN(s, t) =
[

D(s, t) S(s, t)

−S(t, s) I (s, t)

]

(81)

for

x = {x1, . . . , xn1}, w = {w1, . . . ,wn2}
where

D(μ,η) = 2

N
2 −1∑

k=0

1

rk

[
q2k(μ)q2k+1(η) − q2k+1(μ)q2k(η)

]
(82)

S(μ,η) = 2

N
2 −1∑

k=0

1

rk

[
q2k(μ)τ2k+1(η) − q2k+1(μ)τ2k(η)

]
(83)

I (μ,η) = 2

N
2 −1∑

k=0

1

rk

[
τ2k(μ)τ2k+1(η) − τ2k+1(μ)τ2k(η)

]
+ ε(μ,η) (84)

and

qi(z) = e−z2/2
√

erfc(
√

2|Im(z)|)pi(z) (85)

τi(z) =
⎧
⎨

⎩

ie−z̄2/2
√

erfc(
√

2|Im(z)|)pi(z̄), z ∈ R
+
2

− 1
2 Φi(z), z ∈ R

(86)

ε(z1, z2) =
{

1
2 sgn(z1 − z2), z1, z2 ∈ R

0, otherwise
(87)

Φj(x) =
∫ ∞

−∞
sgn(x − z)pj (z)e

−z2/2 dz (88)

The matrix in (80) consists of four blocks representing the four possible combinations
of eigenvalues: real–real, real–complex, complex–real and complex–complex. For ease of
manipulation we shift the mth real eigenvalue to the right-most column and the bottom row.
Since we are shifting two rows and columns an even number of times we do not change the
Pfaffian. We now have:

Pf

⎡

⎢
⎢
⎣

KN(xi, xj ) KN(xi,wl) KN(xi, xm)

KN(wk, xj ) KN(wk,wl) KN(wk, xm)

KN(xm, xj ) KN(xm,wl) KN(xm, xm)

⎤

⎥
⎥
⎦ (89)
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The sizes of the submatrices are:

– top left: 2(m − 1) × 2(m − 1); top centre: 2(m − 1) × 2(n − m); top right: 2(m − 1) × 2.
– centre left: 2(n−m)×2(m−1); centre: 2(n−m)×2(n−m); centre right: 2(n−m)×2.
– bottom left: 2 × 2(m − 1); bottom centre: 2 × 2(n − m); bottom right: 2 × 2.

It can be seen that this matrix is now equivalent to that in (64). By applying the same
process as in Sect. 3 above, we arrive at the odd case. The details of the calculation in-
volve index-shuffling with a liberal coating of tedium and so they are omitted. The results,
however, are:

Theorem 5 For N odd, (80) and (81) hold with the following modifications

D(μ,η) = 2

(N−1)
2 −1∑

k=0

1

rk

[
q̂2k(μ)q̂2k+1(η) − q̂2k+1(μ)q̂2k(η)

]
(90)

S(μ,η) = 2

(N−1)
2 −1∑

k=0

1

rk

[
q̂2k(μ)τ̂2k+1(η) − q̂2k+1(μ)τ̂2k(η)

]
+ κ(μ,η) (91)

I (μ,η) = 2

(N−1)
2 −1∑

k=0

1

rk

[
τ̂2k(μ)τ̂2k+1(η) − τ̂2k+1(μ)τ̂2k(η)

]
+ ε(μ,η)

+ θ(μ,η) (92)

where

q̂i (z) = e−z2/2
√

erfc(
√

2|Im(z)|) p̂i(z) (93)

τ̂i (z) =
⎧
⎨

⎩

ie−z̄2/2
√

erfc(
√

2|Im(z)|) p̂i(z̄), z ∈ R
+
2

− 1
2 (Φi(z) − νi+1

νN
ΦN−1(z)), z ∈ R

(94)

κ(μ,η) =
⎧
⎨

⎩

1
2νN

e−μ2/2
√

erfc(
√

2|Im(μ)|)pN−1(μ), η ∈ R

0, η ∈ R
+
2

(95)

θ(μ,η) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
4νN

(ΦN−1(η) − ΦN−1(μ)), μ,η ∈ R

− 1
2νN

τN−1(η), μ ∈ R, η ∈ R
+
2

1
2νN

τN−1(μ), μ ∈ R
+
2 , η ∈ R

0, μ,η ∈ R
+
2

(96)

p̂i(z) = pi(z) − νi+1

νN

pN−1(z), i = 1, . . . ,N − 2 (97)

νl = 1

2

∫ ∞

−∞
u(λ)e−λ2/2pl−1(λ)dλ (98)

This is the exact form of the N odd correlation functions for GinOE. However, there
are still two further points to appreciate. One is that there are inter-relations between the
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D,S, I within the various blocks, i.e. for the real-real correlations, complex-complex cor-
relations, etc. For the real-real case the relationships are presented in [11], they amount to
differentiation and integration of Sr,r (x, y) to obtain Dr,r (x, y) and Ir,r (x, y) respectively.
In the complex-complex case, the operation is complex conjugation of one of the variables
and multiplication by i. The mixed cases are a combination of these operations. The inter-
relationships are the same for both N even and N odd.

The other point is that there exist summed-up forms of, say, the S in each block, and thus
the D and I by the inter-relations, which are applicable for both N even and N odd. In the
case of Sr,r (x, x), this has been known since the work of Edelman et al. [9], and has been
shown to be true in general in [28].

We collect together the formulae bearing on these points in the Appendix.

5 Concluding Remarks

The problem of computing correlation functions for GinOE is complicated by the eigen-
value jpdf breaking up into sectors according to the number of real eigenvalues. It is further
obscured by the need to treat the N even and N odd cases separately. This latter compli-
cation is shared by the general β = 1 eigenvalue jpdf (3). It has motivated us to revisit the
problem of computing correlations in the N odd case for (3), with our aim being to devise
a method applicable to the GinOE for N odd. We explain, in Sects. 2.4 and 2.5, why the
established method for computing correlations for (3) in the case N odd cannot be applied
to GinOE.

The approach we take is to compute the N odd correlations as limiting cases of the N

even correlations according to (63), in relation to (3), and (79) in relation to GinOE. Pfaffian
forms of the appropriate size are obtained from these by row and column reductions of
Pfaffian form implied by the LHSs.

We remark that (63) and (79) work equally well for relating the correlations for N odd to
those for N even, which can be used as a consistency check on our own workings. Further,
there are other problems to which our method applies. The most immediate is the partially
symmetric GinOE [12, 17], which will be the topic of a future publication.

Appendix

The explicit forms of the terms in the correlation kernel (81) for N odd are contained below.
The subscripts r and c identify real–real, real–complex, complex–real and complex-complex
factors. The convention used in this Appendix is x, y ∈ R and w,z ∈ R

+
2 .

As mentioned after Theorem 5 there are inter-relationships between the various kernel
elements as seen in [3, 11, 28]. Note the interesting fact that to obtain I from S you operate
on the first variable, and to obtain D from S you operate on the second variable.

Ir,r (x, y) = −
∫ y

x

Sr,r (z, y)dz + 1

2
sgn(x − y) (A.1)

Dr,r (x, y) = − ∂

∂y
Sr,r (x, y) (A.2)

Ir,c(x,w) = −Ic,r (w,x) = −
∫ y

x

Sr,c(z,w)dz (A.3)
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Dr,c(x,w) = −Dc,r (w,x) = −iSr,c(x, w̄) (A.4)

Ic,r (w,x) = −Ir,c(x,w) = iSc,r (w̄, x) (A.5)

Dc,r (w,x) = −Dr,c(x,w) = − ∂

∂x
Sc,r (w,x) (A.6)

Ic,c(w,x) = iSc,c(w̄, z) (A.7)

Dc,c(w, z) = −iSc,c(w, z̄) (A.8)

Below are listed the kernel elements S for real–real, real–complex, complex–real and
complex–complex correlations. Using the above relationships, the other elements can be
deduced.

Sr,r (x, y) = e−x2/2

N−1
2 −1∑

k=0

1

rk

[

p2k+1(x)Φ2k(y) − p2k(x)Φ2k+1(y)

− ν2k+1

νN

(
p2k+1(x)ΦN−1(y) − pN−1(x)Φ2k+1(y)

)

+ ν2k+2

νN

(
p2k(x)ΦN−1(y) − pN−1(x)Φ2k(y)

)]

+ e−x2/2

2νN

pN−1(x) (A.9)

Sr,c(x,w) = 2ie−x2/2e−w̄2/2
√

erfc(
√

2|Im(w)|)

×
N−1

2 −1∑

k=0

1

rk

[

p2k(x)p2k+1(w̄) − p2k+1(x)p2k(w̄)

− ν2k+1

νN

(
pN−1(x)p2k+1(w̄) − p2k+1(x)pN−1(w̄)

)

+ ν2k+2

νN

(
pN−1(x)p2k(w̄) − p2k(x)pN−1(w̄)

)]

(A.10)

Sc,r (w,x) = e−w2/2
√

erfc(
√

2|Im(w)|)

×
N−1

2 −1∑

k=0

1

rk

[

p2k+1(w)Φ2k(x) − p2k(w)Φ2k+1(x)

− ν2k+1

νN

(
p2k+1(w)ΦN−1(x) − pN−1(w)Φ2k+1(x)

)

+ ν2k+2

νN

(
p2k(w)ΦN−1(x) − pN−1(w)Φ2k(x)

)]

+ e−w2/2

2νN

√

erfc(
√

2|Im(w)|)pN−1(w) (A.11)
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Sc,c(w, z) = 2ie−w2/2e−z̄2/2
√

erfc(
√

2|Im(w)|)
√

erfc(
√

2|Im(z)|)

×
N−1

2 −1∑

k=0

1

rk

[

p2k(w)p2k+1(z̄) − p2k+1(w)p2k(z̄)

−ν2k+1

νN

(
pN−1(w)p2k+1(z̄) − p2k+1(w)pN−1(z̄)

)

+ ν2k+2

νN

(
pN−1(w)p2k(z̄) − p2k(w)pN−1(z̄)

)]

(A.12)

The kernel elements S can also be summed-up [12, 28]; the summed up forms are listed
here. Note that these formulae are insensitive to the parity of N (in fact N need not even be
an integer), and so provide a further check of our work in this paper.

Sr,r (x, y) = 1√
2π

[

e−(x−y)2/2 Γ (N − 1, xy)

Γ (N − 1)

− 2(N−3)/2 e−x2/2 xN−1 γ (N−1
2 , y2/2)

Γ (N − 1)

]

(A.13)

Sr,c(x,w) = i e−(x−w̄)2/2

√
2π

(w̄ − x)
Γ (N − 1, xw̄)

Γ (N − 1)

√

erfc(
√

2|Im(w)|) (A.14)

Sc,r (w,x) = 1√
2π

√

erfc(
√

2|Im(w)|)
[

e−(w−x)2/2 Γ (N − 1,wx)

Γ (N − 1)

− 2(N−3)/2 e−w2/2 wN−1 γ (N−1
2 , x2/2)

Γ (N − 1)

]

(A.15)

Sc,c(w, z) = i e−(w−z̄)2/2

√
2π

(z̄ − w)
Γ (N − 1,wz̄)

Γ (N − 1)

×
√

erfc(
√

2|Im(w)|)
√

erfc(
√

2|Im(z)|) (A.16)
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